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We present the elements of resummed quantum gravity, a new approach to quantum

gravity based on the work of Feynman using the simplest example of a scalar field as the

representative matter. We show that we get a UV finite quantum correction to Newton’s

law.
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1. Introduction

Newton’s law, one of the most basic laws in physics, is a special case of the so-

lutions of the classical field equations of Albert Einstein’s general theory of rel-

ativity. Successful tests of Einstein’s theory in classical physics are described in

Refs. [1–3]. Quantum mechanics, as formulated by Heisenberg and Schroedinger,

following Bohr,has explained, in the Standard Model(SM) [4], all empirically es-

tablished quantum phenomena except the quantum treatment of Newton’s law.

This obtains even with the tremendous progress in quantum field theory, super-

strings [5, 6], loop quantum gravity [7], etc. In this paper, we address this issue by

using a new approach [8,9] to quantum gravity(QG), building on previous work by

Feynman [10,11], to get a minimal union of Bohr’s and Einstein’s ideas.

From the view of the generic approaches [12] to the attendant bad UV behav-

ior of QG, our approach, based on YFS methods [13, 14], is a new version of the

resummation approach [12] and allows us to make contact with both the extended

theory [12] and the asymptotic safety [12, 15, 16] approaches and to address [8, 9]

issues in black hole physics, some of which relate to Hawking [17] radiation.

The description of our new resummed QG theory is already presented in these

Proceedings in Ref. [9], to which we refer the reader. Here, we go directly to the

issue of the quantum corrections to Newton’s law.

2. Quantum Corrections to Newton’s Law in Resummed QG

The model which we use [8, 9] is gravity coupled to a scalar field as formulated in

Refs. [10, 11]. In our resummed QG theory, the graphs in Fig. 1 become finite as

we explain in Refs. [8, 9]. In this way, we get a UV finite quantum correction to
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Fig. 1. The scalar one-loop contribution to the graviton propagator. q is the 4-momentum of the

graviton.

Newton’s law without modifying Einstein’s theory. In Refs. [8], we show that this

UV finiteness holds for all orders in the loop expansion.

Specifically, introducing the YFS resummed propagators as derived in Refs. [8,

9] into Fig. 1 yields , by the standard methods [8], that the graviton propagator

denominator, q2 + 1
2q4ΣT (2) + iǫ, is specified by

−

1

2
ΣT (2) ∼=

c2

360πM2
Pl

(1)

for c2 =
∫

∞

0
dxx3(1 + x)−4−λcx ∼= 72.1 where λc = 2m

2

πM2

Pl

. This implies the Newton

potential

ΦN (r) = −

GNM1M2

r
(1 − e−ar) (2)

where a = 1/
√

−
1
2ΣT (2)

≃ 3.96MPl when for definiteness we set m ∼= 120GeV [18].

We note that c2
∼= ln 1

λc

−ln ln 1
λc

−

ln ln 1

λc

ln 1

λc
−ln ln 1

λc

−
11
6 . Without resummation, λc = 0,

and c2 is infinite and, as this is the coefficient of q4 in the inverse propagator, no

renormalization of the field and/or of the mass could remove such an

infinity. In our new approach, this infinity is absent.

We can make a cross check of our gauge invariant [8] analysis with the gauge in-

variant analysis of Ref. [19] where the complete result of the one-loop divergences of

our scalar field coupled to Einstein’s gravity have been computed. Since c2 diverges

without our resummation, it follows [8] that we need to make the correspondence

between the poles in n, the dimension of space-time, at n = 4 calculated in Ref. [19]

and the leading log ln 1
λc

. This implies [8]

1

(2 − n/2)
↔ c2, (3)

so that, if we look at the limit q2
→ 0, we find that the coefficient of q4 in the

graviton propagator denominator above is 3/(2−n/2) times the coefficient of c2 on
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the right-hand side of (1), in complete agreement with the result that is implied by

eq.(3.40) in Ref. [19] , for example.

Sub-Planck scale physics is accessible to point particle field theory so that current

superstring theories may be phenomenological models for a more fundamental the-

ory (TUT=The Ultimate Theory) just as the old string theory [20] is such a model

for QCD. Other types of correspondences are not excluded here [21]. Our deep

Euclidean studies are complementary to the low energy studies of Ref. [22]. The

effective cut-off which we generate dynamically is at MPl so that, while renormaliz-

able quantum field theory (QFT) below MPl is unaffected, some non-renormalizable

QFT’s are given new life here – other problems notwithstanding.

Some phenomenological implications of (2) are presented in Ref. [8, 9]. To sum

up, it appears that we may have indeed realized a minimal union of the ideas of

Bohr and Einstein.
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